Protective role of Limonium bonduelli extract against non-enzymatic peroxidation in brain and testes induced by iron in vitro.

Amel Amrani, Nassima Boubekri, Ouahiba Benaissa, Djamila Zama, Fadila Benayache, Samir Benayache



Infertility and Neurodegerative diseases have been linked to oxidative stress arising from peroxidation of membrane biomolecules and high levels of iron have been reported to play an important role. The present study sought to determine the antioxidant activity and protective ability of n-butanol extract of Limonium bonduelli on lipid peroxidation induced by FeSO4 in rat brain and testes homogenates in vitro. n-butanol extract of the aerial parts (leaves and flowers) was prepared, and the ability of the extract to inhibit FeSO4 induced lipid peroxidation in isolated rat brain and testes was determined using spectrophotometric method. The study revealed that the extract inhibited malondialdehyde (MDA) production in FeSO4 induced lipid peroxidation in the brain and testes in a dose-dependent manner and the highest percentage of the inhibition was 89.80% similar to vitamin C in the same concentration (100 µg/mL) in brain and 82.33% in testes (200 µg/mL). Limonium bonduelli extract demonstrated important anti-lipid peroxidative effect, which may be useful in preventing the progress of various oxidative stress related diseases. The higher inhibitory effect of the extract could be attributed to its phytochemical content.


Iron Overload; Brain; Testes; Limonium bonduelli; Antioxidant.

Full Text:



[1]. Lieu PT, Heiskala M, Peterson PA, Yang Y. The roles of iron in health and disease. Mol Aspects Med. 2001; 22(1-2):1-87.

[2]. Emerit J, Beaumont C, Trivin F. Iron metabolism, free radicals, and oxidative injury. Biomed Pharmacother. 2001; 55(6): 333-9.

[3]. Galaris D, Pantopoulos K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci. 2008; 45(1):1-23.

[4]. Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2016; 90(1):1-37.

[5]. Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem, 2002; 91(1): 9-18.

[6]. Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S. The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact. 2010; 186(2):184-99.

[7]. Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010; 345(1-2): 91-104.

[8]. Di Matteo V, Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Curr Drug Targets CNS Neurol Disord. 2003; 2(2): 95-107.

[9]. Oboh G, Odunayo M. Agunloye, Ayodele J. Akinyemi ,Adedayo O. Ademiluyi , Stephen A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’brain-in vitro. Neurochem res. 2013; 38(2): 413-9.

[10]. Dadhania VP, Trivedi PP, Vikram A, Tripathi DN. Nutraceuticals against Neurodegeneration: A Mechanistic Insight. Curr Neuropharmacol. 2016; 14(6): 627-40.

[11]. Turner T T and Lysiak J J. Oxidative Stress: A common factor in testicular dysfunction. Andrology. 2008; 29 (5): 488–498.

[12]. Aitken R J and Roman S D. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev. 2008; 1(1): 15–24.

[13]. Agarwal A, Sekhon LH. Oxidative stress and antioxidants for idiopathic oligoasthenoteratospermia: Is it justified? Indian J Urol. 2011; 27(1): 74–85.

[14]. Mora-Esteves C, Shin D. Nutrient supplementation: improving male fertility fourfold. Semin. Reprod. Med. 2013; 31(4):293-300.

[15]. Gharagozloo P, Gutiérrez-Adán A, Champroux A, Noblanc A, Kocer A et al. A novel antioxidant formulation designed to treat male infertility associated with oxidative stress: promising preclinical evidence from animal models. Hum Reprod. 2016; 31(2): 252-62.

[16]. Kenouche S, Latreche A, Bicha S, Lassed S, Bentamene A et al. Phytochemical and Antioxidant Activity of Limonium Pruinosum (L.). Res. J. Pharm., Biol. Chem. Sci. 2016; 7(1): 1855-1859.

[17]. Boudermine S, Malafronte N, Mencherini T, Esposito T, Aquino RP et al. Phenolic Compounds from Limonium pruinosum. Nat Prod Commun. 2015; 10(2): 319-321.

[18]. Benaissa O, Amrani A, Bicha S, Zama D, Benayache F et al. Free radical scavenging action of phenolic compounds from Limonium bonduelli (Plumbaginaceae). Pharm Lett . 2013; 5 (5): 234-240.

[19]. Rodrigues MJ, Varela J, Barreira L, Custódio L Antioxidant and neuroprotective potential of two halophytes from the Algarve coast. Planta Med. 2014; 80 - P2Y16.

[20]. Rodrigues M J, Neves V, Martins A, Rauter AP, Neng NR, Nogueira JMF, Varela J, Barreira L, Custódio L. In vitro antioxidant and anti-inflammatory properties of Limonium algarvense flowers’ infusions and decoctions: A comparison with green tea (Camellia sinensis). Food Chem. 2016; 200, 322–329.

[21]. Iwashina T. Flavonoid Properties of five Families newly Incorporated into the Order Caryophyllales (Review). Bull. Natl. Mus. Nat. Sci., Ser. B. 2013; 39(1): 25–51.

[22]. Erena Y, Özatab A. Determination of mutagenic and cytotoxic effects of Limonium globuliferum aqueous extracts by Allium, Ames, and MTT tests. Rev Bras Farmacogn. 2014; 24: 51-59.

[23]. Harborne JB. Comparative biochemistry of flavonoids—I: Distribution of chalcone and aurone pigments in plants. Phytochemistry. 1966; 5 (1) 111-115.

[24]. Harborne JB. 1998. Phytochemical methods: A guide to modern techniques of plant analysis. 2nd ed. London: Chapman and Hall. 54–84.

[25]. Lefèvre G, Beljean-Leymarie M, Beyerle F, Bonnefont-Rousselot D, Cristol JP, Thérond P, Lieu PT, Heiskala M, Peterson PA, Yang Y. The roles of iron in health and disease. Mol Aspects Med. 2001; 22(1-2):1-87.

[26]. Cao U, Ikeda I. Antioxidant activity and antitumor activity (in vitro) of xyloglucan selenious ester and surfated xyloglucan. Int. J. Biol. Macromolec 2009; 45 : 231–235.

[27]. Angelova D M and Brown D R. Iron, Aging, and Neurodegeneration. Metals. 2015; 5 : 2070- 2092.

[28]. Gaasch JA, Lockman PR, Geldenhuys WJ, Allen DD, Van der Schyf CJ. Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res. 2007; 32(7):1196-208.

[29]. Minotti G and Aust SD. The role of Iron in oxygen mediated lipidperoxidation. Free. Radic Biol. Med 1987; 3 :379–387.

[30]. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009; 7(1): 65–74.

[31]. Fraunberger E A., Scola G, Laliberté VLM, Duong A, and Andreazza AC. Redox modulations, antioxidants, and neuropsychiatric disorders. Oxid Med Cell Longev. 2016; ID 4729192 : 14.

[32]. Ogunruku OO, Oboh G, and Ademosun AO. Water extractable phytochemicals from peppers (capsicumspp.) inhibit acetylcholinesterase and butyrylcholinesterase activities and prooxidants induced lipid peroxidation in rat brain in vitro. International Journal of Food Science. 2014; ID 605618, 7.

[33]. Zago MP, Verstraeten SV, Oteiza PI. Zinc in the prevention of Fe2+ initiated lipid and protein oxidation. Biol Res. 2000; 33(2):143-50.

[34]. Akomolafe SF, Oboh G, AkindahunsiA A, Afolayan A J. Tetracarpidium conophorum (Mull.Arg) Hutch & Dalziel inhibits FeSO4 -induced lipid peroxidation in rat’s genitals. BMC Complementary and Alternative Medicine 2015; 15:57.

[35]. Pandey KB and Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009; 2(5): 270–278.

[36]. Uygur R, Yagmurca M, Alkoc OA, Genc A, Songur A, Ucok K, Ozen OA. Effects of quercetin and fish n-3 fatty acids on testicular injury induced by ethanol in rats. Andrologia. 2013; 47(1) :121-122.

[37]. Baltaci BB, Uygur R, Caglar V, Aktas C, Aydin M, Ozen OA. Protective effects of quercetin against arsenic-induced testicular damage in rats. Andrologia. 2016; 18. doi: 10.1111/and.12561. [Epub ahead of print]

[38]. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002; 13(10): 572-584.

[39]. Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009; 53(2):75-100.

[40]. Oboh G, Akinyemi AJ, Ademiluyi AO. Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe(2+) induced lipid peroxidation in rat brain in vitro. Exp Toxicol Pathol. 2012; 64(1-2):31-6.

[41]. Tvrda E, Peer R, Sikka SC, and Agarwa A. Iron and copper in male reproduction: a double-edged sword. J Assist Reprod Genet. 2015; 32(1): 3–16.

[42]. Jamalan M, Ghaffari MA, Hoseinzadeh P, Hashemitabar M, Zeinali M. Human sperm quality and metal toxicants: protective effects of some flavonoids on male reproductive function. Int J Fertil Steril. 2016; 10(2): 215-23.

[43]. Akomolafe SF, Oboh G, Akindahunsi AA, Akinyemi AJ, Adeyanju O. Inhibitory effect of aqueous extract of moringa oleifera and Newbuoldia laevis leaves on ferrous sulphate and sodium nitroprusside induced oxidative stress in rat’s testes in vitro. Open J Med Chem. 2012; 2 : 119-128.

[44]. Akomolafe SF, Oboh G, Oyeleye SI, Molehin OR, Ogunsuyi OB. Phenolic Composition and Inhibitory Ability of Methanolic Extract from Pumpkin (Cucurbita pepo L) Seeds on Fe-induced Thiobarbituric acid reactive species in Albino Rat’s Testicular Tissue In-Vitro. J App Pharm Sci. 2016; 6 (9): 115-120.


  • There are currently no refbacks.

Copyright (c) 2017 amel amrani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Advanced Research Journals

18K, Street 1st, Gaytri Vihar, Pinto Park, Gwalior, M.P. India (Design) 2009-2018


Follow @arjournals on Twitter