Structural designing of suppressors for autisms spectrum diseases using molecular dynamics sketch

Bipin BJ Nair, Vijesh Bhaskaran, Arunjit K

DOI: http://dx.doi.org/10.5138/09750215.1973

Abstract


In this paper we are sketching the chemical structure of suppressor drug for autism spectrum disorder using a computational tool. Here we are designing three molecular compounds like Fluoxetine, Risperidone, Melatonin. Structuring the suppressors, sketching the aromatization and bonding of the functional groups with the elements like Oxygen, Nitrogen, halogens. In our work we are using computational algorithm for drawing the structure of suppressor drug. In this paper we are mentioning the autism spectrum suppressor’s molecular formula as well as structural formula.


Keywords


Cheminformatics, Drug designing, Autism, Fluoxetine, Risperidone, Melatonin

Full Text:

PDF

References


[1]. Lusci A, Fooshee D, Browning M, Swamidass J, Baldi P. Accurate and efficient target prediction using a potency-sensitive influence-relevance voter. Journal of cheminformatics. 2015 Dec 29;7(1):63.

[2]. Yu X, Geer LY, Han L, Bryant SH. Target enhanced 2D similarity search by using explicit biological activity annotations and profiles. Journal of cheminformatics. 2015 Dec 1;7(1):55.

[3]. Mervin LH, Afzal AM, Drakakis G, Lewis R, Engkvist O, Bender A. Target prediction utilising negative bioactivity data covering large chemical space. Journal of cheminformatics. 2015 Oct 24;7(1):51.

[4]. Wang Z, Liang L, Yin Z, Lin J. Improving chemical similarity ensemble approach in target prediction. Journal of cheminformatics. 2016 Dec 1;8(1):1-10.

[5]. Dufresne Y, Noé L, Leclère V, Pupin M. Smiles2Monomers: a link between chemical and biological structures for polymers. Journal of cheminformatics. 2015 Dec 1;7(1):62

[6]. Dong J, Yao ZJ, Wen M, Zhu MF, Wang NN, Miao HY, Lu AP, Zeng WB, Cao DS. BioTriangle: a web-accessible platform for generating various molecular representations for chemicals, proteins, DNAs/RNAs and their interactions. Journal of Cheminformatics. 2016 Jun 21;8(1):34.

[7]. Naderi M, Alvin C, Ding Y, Mukhopadhyay S, Brylinski M. A graph-based approach to construct target-focused libraries for virtual screening. Journal of cheminformatics. 2016 Mar 15;8(1):14.

[8]. Fitriawan A, Wasito I, Syafiandini AF, Azminah A, Amien M, Yanuar A. Deep Belief Networks for Ligand-Based Virtual Screening of Drug Design. Proceedings of 2016 6th International Workshop on Computer Science and Engineering (WCSE 2016) Tokyo, Japan, 17-19 June, 2016, pp. 655-659

[9]. Wang Z, Liang L, Yin Z, Lin J. Improving chemical similarity ensemble approach in target prediction. Journal of cheminformatics. 2016 Dec 1;8(1):1-10.

[10]. Mu F, Unkefer PJ, Unkefer CJ, Hlavacek WS. Prediction of oxidoreductase-catalyzed reactions based on atomic properties of metabolites. Bioinformatics. 2006 Dec 15;22(24):3082-8.

[11]. Faulon JL, Misra M, Martin S, Sale K, Sapra R. Genome scale enzyme–metabolite and drug–target interaction predictions using the signature molecular descriptor. Bioinformatics. 2008 Jan 15;24(2):225-33.

[12]. Yang CH, Cheng YH, Chuang LY, Chang HW. Drug-SNPing: an integrated drug-based, protein interaction-based tagSNP-based pharmacogenomics platform for SNP genotyping. Bioinformatics. 2013 Mar 15;29(6):758-64.

[13]. Sudharsana Sundarrajan, Sweta Kumari, Sajitha Lulu and Mohanapriya Arumugam. Identification of Potent Hepatitis C Virus RdRp Inhibitors by Structure Based Drug Designing .

[14]. V. Madhumathi and S.Vijayakumar. Computational Analysis of Oral Disease (Periodontitis) for Drug p

[15]. Banerjee P, Siramshetty VB, Drwal MN, Preissner R. Computational methods for prediction of in vitro effects of new chemical structures. Journal of Cheminformatics. 2016 Dec 1;8(1):51.

[16]. Ertl P, Patiny L, Sander T, Rufener C, Zasso M. Wikipedia Chemical Structure Explorer: substructure and similarity searching of molecules from Wikipedia. Journal of cheminformatics. 2015 Dec 1;7(1):10.

[17]. Wójcikowski M, Zielenkiewicz P, Siedlecki P. Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field. Journal of cheminformatics. 2015 Dec 1;7(1):26.

[18]. Seal A, Ahn YY, Wild DJ. Optimizing drug–target interaction prediction based on random walk on heterogeneous networks. Journal of cheminformatics. 2015 Aug 19;7(1):40.


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Advanced Research Journals

4/70-71. Black Well HB, ALW 30100 IND

Copyright@arjournals.org 2009-2016

 

Follow @arjournals on Twitter