Data Mining Based on Association Rule Privacy Preserving

Sulakshana Dubey, Arun Sen

DOI: http://dx.doi.org/10.5138/bjdmn.v5i1.1639

Abstract


The security of the large database that contains certain crucial information, it will become a serious issue when sharing data to the network against unauthorized access. Privacy preserving data mining is a new research trend in privacy data for data mining and statistical database. Association analysis is a powerful tool for discovering relationships which are hidden in large database. Association rules hiding algorithms get strong and efficient performance for protecting confidential and crucial data. Data modification and rule hiding is one of the most important approaches for secure data. The objective of the proposed Association rulehiding algorithm for privacy preserving data mining is to hide certain information so that they cannot be discovered through association rule mining algorithm. The main approached of association rule hiding algorithms to hide some generated association rules, by increase or decrease the support or the confidence of the rules. The association rule items whether in Left Hand Side (LHS) or Right Hand Side (RHS) of the generated rule, that cannot be deduced through association rule mining algorithms. The concept of Increase Support of Left Hand Side (ISL) algorithm is decrease the confidence of rule by increase the support value of LHS. It doesnÊt work for both side of rule; it works only for modification of LHS. In Decrease Support of Right Hand Side (DSR) algorithm, confidence of the rule decrease by decrease the support value of RHS. It works for the modification of RHS. We proposed a new algorithm solves the problem of them. That can increase and decrease the support of the LHS and RHS item of the rule correspondingly so that more rule hide less number of modification. The efficiency of the proposed algorithm is compared with ISL algorithms and DSR algorithms using real databases, on the basis of number of rules hide, CPU time and the number of modifies entries and got better results.

Keywords


Data Mining, Association Rule, Privacy Preserving Data Mining, Sensitive Items, Association Rule Hiding.

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
';



 

Advanced Research Journals

4/70-71. Black Well HB, AL 30100

Copyright@arjournals.org 2009-2011

 

Follow @arjournals on Twitter