Mining Frequent Item Sets Data Streams using "ÉclatAlgorithm"

Geetanjli Khambra, Pankaj Richhariya

DOI: http://dx.doi.org/10.5138/bjdmn.v4i2.1602

Abstract


Frequent pattern mining is the process of mining data in a set of items or some patterns from a largedatabase. The resulted frequent set data supports the minimum support threshold. A frequentpattern is a pattern that occurs frequently in a dataset. Association rule mining is defined as to findout association rules that satisfy the predefined minimum support and confidence from a given database. If an item set is said to be frequent, that item set supports the minimum support andconfidence. A Frequent item set should appear in all the transaction of that data base. Discoveringfrequent item sets play a very important role in mining association rules, sequence rules, web logmining and many other interesting patterns among complex data. Data stream is a real timecontinuous, ordered sequence of items. It is an uninterrupted flow of a long sequence of data. Somereal time examples of data stream data are sensor network data, telecommunication data,transactional data and scientific surveillances systems. These data produced trillions of updatesevery day. So it is very difficult to store the entire data. In that time some mining process is required.Data mining is the non-trivial process of identifying valid, original, potentially useful and ultimatelyunderstandable patterns in data. It is an extraction of the hidden predictive information from largedata base. There are lots of algorithms used to find out the frequent item set. In that Apriorialgorithm is the very first classical algorithm used to find the frequent item set. Apart from Apriori,lots of algorithms generated but they are similar to Apriori. They are based on prune and candidategeneration. It takes more memory and time to find out the frequent item set. In this paper, we havestudied about how the éclat algorithm is used in data streams to find out the frequent item sets.Éclat algorithm need not required candidate generation.

Keywords


Association rules mining, Data mining, Data streams, Éclat algorithm, frequent pattern mining.

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
';



Advanced Research Journals

18K, Street 1st, Gaytri Vihar, Pinto Park, Gwalior, M.P. India

Copyright@arjournals.org (Design) 2009-2016

 

Follow @arjournals on Twitter